Chapter 2: Functions of a Random Variable

2.1 Distributions of Functions of a Random Variable

Theorem 1: Let X have cdf $F_X(x)$ and let $Y = g(X)$. Let X and Y be supports of X and Y respectively, i.e.
$$X = \{x: f_X(x) > 0\}$$
and
$$Y = \{y: y = g(x) > 0, \text{ for some } x \in X\}.$$

(a) If g is an increasing function on X, then
$$F_Y(y) = F_X(g^{-1}(y)) \text{ for every } y \in Y.$$
(b) If g is an decreasing function on X and X is a continuous r.v., then
$$F_Y(y) = 1 - F_X(g^{-1}(y)) \text{ for every } y \in Y.$$
Theorem 2: Let X have pdf $f_X(x)$ and let $Y = g(X)$, where g is a monotone function. Let X and Y be supports of X and Y respectively. Suppose that $f_X(x)$ is continuous on X and that $g^{-1}(y)$ has a continuous derivative on Y. Then the pdf of Y is given by

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|, & y \in \text{spt of } Y \\ 0, & \text{otherwise} \end{cases}$$

where "spt of Y" means the support of Y.

Theorem 3: (probability integral transformation)
Let X have continuous cdf $F_X(x)$ and define r.v. Y as $Y = F_X(X)$. Then Y is uniformly distributed on $(0, 1)$, i.e.

$$P(Y \leq y) = y, \ 0 < y < 1.$$

2.2 Expectations

Definition 1: The expectation or mean of a r.v.
$g(X)$, denoted by $E(g(X))$, is defined as follows:

(a) If X is discrete, then
\[E(g(X)) = \sum_{x \in \text{spt of } X} g(x)f_X(x). \]

(b) If X is continuous, then
\[E(g(X)) = \int_{-\infty}^{\infty} g(x)f_X(x) \, dx. \]

Theorem 4: Let X be a r.v. and let a, b and c be constants, then for any functions $g_1(x)$ and $g_2(x)$ such that $E(g_1(X))$ and $E(g_2(X))$ exist, the following properties are satisfied:

(a)
\[E(ag_1(X) + bg_2(X) + c) = aE(g_1(X)) + bE(g_2(X)) + c. \]

(b) If $g_1(x) \geq 0$ for all x, then $E(g_1(X)) \geq 0$.

(c) If $g_1(x) \geq g_2(x)$ for all x, then
\[E(g_1(X)) \geq E(g_2(X)). \]

(d) If $a \leq g_1(x) \leq b$ for all x, then
\[a \leq E(g_1(X)) \leq b. \]
2.3 Moments and Moment Generating Functions

Definition 2: For each integer \(n \), the \(n \)th moment of \(X \), denoted by \(\mu'_n \), is

\[
\mu'_n = E(X^n).
\]

The \(n \)th central moment of \(X \), denoted by \(\mu_n \), is

\[
\mu_n = E(X - \mu)^n
\]

where \(\mu = \mu'_1 = E(X) \).

Definition 3: The second central moment of a r.v. \(X \) is called the variance of \(X \), i.e.

\[
Var(X) = E(X - E(X))^2
\]

Theorem 5: If \(X \) is a r.v. with finite variance, then

(a) \[
Var(X) = E(X^2) - (E(X))^2
\]

(b) For any constants \(a \), and \(b \),
\[
Var(aX + b) = a^2 Var(X)
\]

Definition 4: Let \(X \) be a r.v. with cdf \(F_X(x) \). The **moment generating function (mgf)** of \(X \) denoted by \(M_X(t) \), is
\[
M_X(t) = E(e^{tx}),
\]
provided that the expectation exists for \(t \) in some neighborhood of 0; otherwise, we said that the moment generating function does not exist.

Theorem 6: Let \(a \), and \(b \) be any constants. Then the mgf of a r.v. \(aX + b \) is given by
\[
M_{aX+b}(t) = e^{bt} M_X(at).
\]

Theorem 7: If \(X \) has mgf \(M_X(t) \), then
\[
E(X^n) = M_X^{(n)}(0) \equiv \left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0}
\]

Theorem 8: Let \(F_X(y) \) and \(F_Y(y) \) be two cdfs all
of whose moments exist.

(a) If X and Y have bounded support, then

$$F_X(u) = F_Y(u) \text{ for all } u,$$

if and only if

$$E(X^r) = E(Y^r) \text{ for all } r = 0, 1, 2, \ldots.$$

(b) If the mgfs exist and $M_X(t) = M_Y(t)$ for all t in some neighborhood of 0, then $F_X(u) = F_Y(u)$ for all u.

Theorem 9: (Convergence of mgfs) Let X_1, X_2, \ldots be a sequence of r.v.s, each with mgf $M_{X_i}(t)$.

Suppose that there exist an mgf $M_X(t)$ such that

$$\lim_{i \to \infty} M_{X_i}(t) = M_X(t) \text{ for all } t \text{ in a neighborhood of } 0,$$

then there exist a unique cdf F_X whose moments are determined by $M_X(t)$ and for all x where $F_X(x)$ is continuous, we have

$$\lim_{i \to \infty} F_{X_i}(x) = F_X(x).$$

That is, convergence of mgfs to an mgf in a neighborhood of 0, implies convergence of cdfs.